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We demonstrate that the Pauli spin-splitting effects in a magnetic field improve nesting properties of a
realistic quasi-one-dimensional electron spectrum. As a result, a high resistance Peierls charge-density-wave
�CDW� phase is stabilized in high enough magnetic fields in �Per�2Pt�mnt�2 conductor. We show that, in low
and very high magnetic fields, the Pauli spin-splitting effects lead to a stabilization of a soliton wall superlattice
�SWS� CDW phase, which is characterized by periodically arranged soliton and antisoliton walls. We suggest
experimental studies of the predicted first-order phase transitions between the Peierls and SWS phases to
discover a unique SWS phase. It is important that, in the absence of a magnetic field and in a limit of very high
magnetic fields, the suggested model is equivalent to the exactly solvable model of Brazovskii, Dzyaloshinskii,
and Kirova for the Su-Schrieffer-Heeger solitons.
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I. INTRODUCTION

It is well-known that the charge-density-wave �CDW�
phases are generally destroyed by a magnetic field due to the
Pauli spin-splitting effects, i.e., they are paramagnetically
limited.1–6 On the other hand, the spin-density-wave �SDW�
phases are not sensitive to the Pauli spin-splitting
effects.2,7–12 In some quasi-one-dimensional �Q1D� organic
materials, the field-induced dimensional crossovers in an
electron motion2,7 can even enhance the SDW instability and
lead to a cascade of phase transitions, which is known as the
field-induced spin-density-wave �FISDW� one.2,7–12 This
idea has been also applied to the CDW phases,3,4 where the
field-induced dimensional crossovers are shown to restore
the CDW instability, but only at rather low temperatures.4

Therefore, the recent discovery of a high resistance state in
Q1D materials �Per�2X�mnt�2 �X=Pt and Au� at high mag-
netic field by Graf et al.13 is very surprising and interesting.

Originally, the above-mentioned phenomenon was
explained13–15 in terms of the dimensional crossovers
effects.2–4,7 This explanation may work for �Per�2Au�mnt�2
conductor, where the high resistance state is observed only
for a magnetic field, applied perpendicular to the conducting
planes, H �c, and, thus, the orbital effects play an important
role. In a sister compound �Per�2Pt�mnt�2, however, the high
resistance state is observed at any direction of a magnetic
field.13,14 In particular, when magnetic field is parallel to the
conducting chains, H �b, the dimensional crossovers
effects2–4,7 do not occur. Therefore, the observations of the
high resistance state in �Per�2Pt�mnt�2,13,14 which is almost
independent on a direction of a magnetic field, indicates that
this unique phenomenon cannot be explained by the previous
theories.1–4,7–10

Based on the band calculation16 and the experiments,17,18

we have proposed a simplified but realistic Q1D model elec-
tron spectrum19 to explain the main features of the phase
diagram in �Per�2Pt�mnt�2 conductor. We have demonstrated
that the Pauli spin-splitting effects improve nesting condi-
tions for the suggested Fermi surface and, therefore, a tradi-
tional Peierls CDW state restores at high magnetic fields. We

have also suggested a hypothesis19 that, at low and high
enough magnetic fields, a unique soliton wall superlattice
�SWS� phase may appear. This phase is characterized by two
gaps in its electron spectrum and by periodically arranged
soliton and antisoliton walls in a real space. The distance
between these walls and values of the gaps in an energy
spectrum depend on a value of a magnetic field. Below, we
study the phase diagram in more details. The main result of
the present paper is a confirmation of the above-mentioned
hypothesis.19 In particular, we calculate the Landau free en-
ergy, minimize it and show that, indeed, the SWS phase is a
ground state at low and high enough magnetic fields. We also
demonstrate that the phase transitions between the Peierls
and SWS phases are of the first order and suggest some
experimental methods to discover the unique SWS phase.
�Note that below we use a mean-field Landau theory of the
second-order phase transitions for interactions of phonons
with almost 1D electrons. To validate a mean-field approach,
we assume that phonon spectrum is characterized by strongly
enough 3D features.�

The outline of our paper is as follows. In Sec. II, the spin
improved nesting phenomenon, which is crucial for under-
standing of the phase diagram in �Per�2Pt�mnt�2 conductor, is
qualitatively discussed. Phase-transition line between metal-
lic and the CDW phases is determined in Sec. III by means
of the finite temperature Green’s functions technique. In Sec.
IV, a free energy of the CDW phase relative to a metallic
phase is calculated, which allows to obtain a detailed phase
diagram.

II. SPIN-IMPROVED NESTING

Let us discuss the spin improved nesting phenomenon,
which results in a stabilization of the traditional Peierls
CDW state at high enough magnetic fields in �Per�2Pt�mnt�2
conductor. Below, we use the following simplified model
electron spectrum, corresponding to four plane sheets of the
Fermi surface,

��
��p� = � vF�py � pF � ��p/2��− 1��� . �1�

�Here pF and vF are the average Fermi momentum and the
Fermi velocity, +�−� stands for right �left� part of the Fermi
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surface, �=1�2� stands for the first �second� conducting
perylene chain, �p is a difference between values of the
Fermi momenta on two different conducting chains, and py is
an electron momentum along the conducting direction.� Note
that this model is based on numerical band calculations16 and
experimentally observed quantum interference oscillations17

and Landau levels quantization.18 Although the band
calculations16 indicate that the actual Fermi surface consists
of eight slightly corrugated open sheets, four of them are
almost identical to the other four, and, thus, we do not dis-
tinguish between them. Notice that, in Eq. �1�, we ignore an
electron motion in perpendicular to the conducting chains
directions. This seems to be legitimate in �Per�2Pt�mnt�2 ma-
terial since the corrugations of the open sheets of the Fermi
surface �1� are less than the distance between the Fermi sur-
faces, �p.16,17

In a magnetic field, the electron spectrum �1� is split into
eight sheets,

���
� �p� = � vF�py � pF � ��p/2��− 1��� − ��BH , �2�

where �= �1 corresponds to a spin component of an elec-
tron along a direction of a magnetic field, �B is the Bohr
magneton. As shown in Fig. 1, there exist four different nest-
ing vectors competing with each other, Q1,+1, Q1,−1, Q2,+1,
and Q2,−1. Note that the Peierls CDW instability, which re-
sults from pairing of electrons and holes with the same spins
and with momenta difference 2pF, is, thus, paramagnetically
limited. This is clearly seen from Fig. 1. Indeed, two original
nesting vectors,

Q = 2pF � �p , �3�

are split in the presence of a magnetic field into four ones,

Q�� = 2pF + q��,q�� = �− 1���p − 2��BH/vF, �4�

which, in very high magnetic fields, partially destroy the
nesting conditions and, thus, decreases the CDW transition
temperature. Moreover, the existence of these four nesting
vectors may even correspond to the appearance of several
energy gaps in an electron spectrum at high values of the
parameters �p and 2�BH /vF. Our theoretical results, as
shown below, confirm the appearance of the SWS phase with
two energy gaps, which is in a qualitative agreement with a
general theory of solitons and soliton superstructures.20–24

However, according to Fig. 1 and Eq. �4�, at some critical
value of a magnetic field,

Hp
� = �pvF/2�B, �5�

two of the nesting vectors coincide, Q1,−1=Q2,+1=2pF, and
the number of nesting vectors decreases to three, which im-
proves the nesting conditions. Moreover, according to Eq.
�4�, a half of original plane sheets of the Fermi surface are
nested with Q=2pF. Therefore, we expect a restoration of the
traditional Peierls CDW phase with Q=2pF and one gap in
an electron spectrum in the vicinity of H�Hp

� �see Figs. 2
and 3�. �Note that our model electron spectrum �1� corre-
sponds to electron wave functions, strongly localized on two
different types of the conducting chains. In this case, the best
nesting vector is directed along the conducting chains with
perpendicular to the chains component being zero.�
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FIG. 1. Fermi surface of a Q1D conductor with two nonequiva-
lent conducting chains in a magnetic field. The original four sheets
of the Fermi surface are split into eight ones �see Eq. �2�� and, thus,
there exists a competition between the CDW phases with four dif-
ferent nesting vectors, Q1,+1, Q1,−1, Q2,+1, and Q2,−1 �see Eq. �4��.
At magnetic field, Hp

� =�pvF /2�B, two nesting vectors coincide,
Q1,−1=Q2,+1=2pF, with a half of the original Fermi surface being
nested. This results in a restoration of the traditional Peierls CDW
phase at high enough magnetic fields �see Eqs. �5� and �14� and Fig.
2�.
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FIG. 2. Hypothetical phase diagram �Ref. 19� of Q1D conductor
�Per�2Pt�mnt�2 in a magnetic field. Solid line is a phase-transition
line between the metallic and CDW phases, calculated from Eq.
�14�. The dotted lines separate the Peierls and SWS phases. For
confirmation of this phase diagram, see Sec. IV and Fig. 5.
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FIG. 3. Electron spectrum of the Peierls phase �left� has one
energy gap, �p, whereas the SWS phase �right� is characterized by
two smaller energy gaps, �SWS��p. This results in different optical
and thermodynamical properties of the Peierls and SWS phases.
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III. METAL-CDW TRANSITION LINE

Now let us consider the CDW phase with nesting vector,

Q = �0,2pF + q,0� , �6�

which corresponds to the following CDW order parameter,

�CDW�x� = �qei�2pF+q�x + �q
�e−i�2pF+q�x. �7�

Below, we use the finite temperature Green’s functions
method25 to study the metal-CDW phase-transition line. We
consider the following standard mean-field Hamiltonian:

Ĥ = �
�=1,2

�
�=�1

�
	

�a��
† �	�a���	�����

+ �	� − ��

+ b��
† �	�b���	�����

− �	� − ��	

+ �
�=1,2

�
�=�1

�
	

�a��
† �	�b���	 − q��q

+ b��
† �	�a���	 + q��q

�	 , �8�

where


���x� = exp�− ipFx��
	

ei	xb���	� + exp�ipFx��
	

ei	xa���	�

�9�

is a field operator of an electron, with a���	� and b���	�
being electron annihilation operators near the right and left
sheets of the Fermi surface, correspondingly.

Following the same approach as in the theory of super-
conductivity, we define the normal and anomalous �Gor’kov�
Green’s functions,

G��
++�	,�� = − 
T�a���	,��a��

† �	,0��,G��
−+�	,��

= − 
T�b���	 − q,��a��
† �	,0�� , �10�

and derive the corresponding equations of motion,

�i�n − ����
+ �	� − ���G��

++�	,i�n� − �qG��
−+�	,i�n� = 1,

�11�

�i�n − ����
− �	 − q� − ���G��

−+�	,i�n� − �q
�G��

++�	,i�n� = 0.

�12�

In this case, the CDW gap is self-consistently determined by

�q
� = − g2 �

�=1,2
�

�=�1
�

	

T�
�n

G��
−+�	,i�n� , �13�

where �n=2
T�n+1 /2� is the Matsubara frequency.25

Solution of a linearized variant of Eqs. �11�–�13� gives us
the following phase-transition line between the metallic and
CDW phases:

ln�Tc0

Tc

 =

1

4 �
�=1,2

�
�=�1

�
n=0

�

�
vF

2�q − q���2/�4
Tc�2

�n +
1

2

��n +

1

2

2

+ vF
2�q − q���2/�4
Tc�2� ,

�14�

where q�� are given by Eq. �4�. Note that Eq. �14� can be
rewritten in a more terse way using the so-called �
function,26

ln�Tc0

Tc

 =

1

4 �
�=1,2

�
�=�1

�1

2
��1

2
+ i

vF�q − q���
4
Tc

�
+

1

2
��1

2
− i

vF�q − q���
4
Tc

� − ��1

2
�
 . �15�

Each of these equations defines the metal-CDW phase-
transition line. In particular, they determine a transition tem-
perature Tc for electron spectrum �1� in the presence of a
magnetic field in terms of a transition temperature Tc0, cor-
responding to ideal nesting conditions �i.e., H=0 and �p
=0�. Note that a competition between the four nesting vec-
tors of Eq. �4�, discussed in Sec. II, is directly seen from Eqs.
�14� and �15�.

Numerical solutions of Eq. �14� is presented in Fig. 2,
where we use a value of the parameter �pvF=60 K, deter-
mined from a theoretical analysis of the experimentally ob-
served quantum magnetic oscillations.17 As seen from Fig. 2,
the Peierls phase is stabilized at high enough magnetic fields,
29 T�H�49 T. At very high magnetic fields, H�49 T,
and low magnetic fields, H�29 T, an incommensurate
CDW phase is shown to be a ground state. We suggest a
hypothesis19 that this incommensurate phase actually corre-
sponds to the SWS ground state. The latter statement is
proved by an analysis of the Landau free energy in Sec. IV
�see also Fig. 5�. We point out that the calculated in this
section metal-CDW phase-transition line is in very good
qualitative and quantitative agreements with the observed
one.13,14

IV. FIRST-ORDER PHASE TRANSITIONS

It is known that, in the vicinity of a metal-CDW second-
order phase-transition line, the order parameter is vanish-
ingly small and the Landau theory of the second-order phase
transitions can be applied. Note that the SWS phase, in the
vicinity of the metal-CDW phase-transition line, is character-
ized by the following order parameter:21–24

�SWS�x� = � cos�qx�cos�2pFx� , �16�

which corresponds to mixing of two order parameters �7�
with +q and −q, where q�0. Therefore, below, we derive
the Landau free energy up to the fourth-order terms in �q
and �−q and study the mixing effects of these order param-
eters in the SWS phase.
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A. Free-Energy Corrections

In this section, we consider the following improved
Hamiltonian:

Ĥ = Ĥ0 + ĤI, �17�

where Ĥ0 corresponds to a kinetic energy of free electrons
and,

ĤI = �
�

�
��

��qa��
† �	 + q�b���	� + �q

�b��
† �	�a���	 + q�

+ �−qa��
† �	 − q�b���	� + �−q

� b��
† �	�a���	 − q�	 , �18�

is a mean-field Hamiltonian for interactions between elec-
trons and the CDW lattice deformation. In contrast to the
Hamiltonian of Sec. III, a possible mixing of the order pa-
rameters, �q and �−q, is taken into account in Eq. �18�.

Below, we apply to Hamiltonian �18� a diagram technique
for a thermodynamic potential, described, for example, in
Ref. 25. This allows us to determine the Landau free energy
up to the fourth-order terms in the order parameters, �q and
�−q,

�F = ����q�2 + ��−q�2� + �1���q�4 + ��−q�4� + �2��q�−q�2,

�19�

where details of our calculation of the coefficients, �, �1,
and �2, can be found in Appendix. �Note that, in the paper,
we consider a so-called incommensurate model of
�Per�2Pt�mnt�2 electron spectrum. It is an appropriate ap-
proximation for our calculations since very weak 1/4 com-
mensurability effects are easily destroyed by small �but non-
zero� corrugations of the Q1D Fermi surfaces in
�Per�2Pt�mnt�2.�

As known, the coefficient � determines the metal-CDW
transition line if it is set to zero. It is positive in the metallic
phase and negative in the CDW one. Therefore, to determine
the CDW ground state, we need to minimize the free energy
�19� for ��0. In non-SWS phase, where only one order
parameter is nonzero �e.g., �q�0 and �−q=0�, the minimi-
zation procedure results in

�FNS = −
�2

4�1
. �20�

In the SWS phase, where there is a mixing of the order
parameters, �q and �−q, the free energy is

�FS = −
�2

2�1 + �2
. �21�

Comparing Eqs. �20� and �21�, we find the following condi-
tion for the appearance of the SWS phase:

2�1 � �2. �22�

Below, we use Eqs. �20� and �21� for the Landau free energy
to study the CDW phase in more detail.

B. Results

In this section, the phase-transition lines from the Peierls
phase to the SWS phase are numerically calculated by means

of Eqs. �20� and �21�. We discuss in detail the phase-
transition lines in the vicinity of H�49 T. In the vicinity of
H�29 T, the phase diagram is qualitatively similar to that
in the vicinity of H�49 T.

The results of the numerical evaluations of the Landau
free energies are shown in Fig. 4, where corrections for the
SWS, Peierls, and incommensurate non-SWS CDW phases
are calculated for the same temperature which is slightly be-
low the metal-CDW transition line. This guarantees a valid-
ity of the Landau second-order phase theory expansions for
the free energies. As seen, at H�49.076106 T, the incom-
mensurate non-SWS phase has a lower free energy, but for
higher magnetic fields, the SWS phase is a ground state.
Therefore, a true free-energy curve has a discontinuity in its
slope at the point of a transition from the incommensurate
non-SWS to SWS phases, which corresponds to the first-
order phase transition �see right dashed line in Fig. 5�. We
also note that at H=49.076072 T, there is a kink in the free-
energy line, which corresponds to another first-order phase
transition from the Peierls to incommensurate non-SWS
phase. Our detailed numerical calculations show that, be-
tween the above-mentioned two first-order phase transitions,
there exists the incommensurate non-SWS state, which is
characterized by an incommensurate nesting vector, Q
�2pF in Eq. �6�.

A detailed phase diagram in the vicinity of H�49 T is
shown in Fig. 5. Starting from the Peierls CDW phase, as
magnetic field increases, the ground state first becomes a
non-SWS CDW state with incommensurate nesting vector,
then the system enters into the SWS CDW phase. However,
we point out that numerically the region of a stability of the
non-SWS incommensurate phase is extremely narrow. In
particular, it is �H�3.410−5 T in magnetic field units and
�T�4.610−5 K in temperature units, where we use the fol-
lowing expression for the Pauli spin-splitting energy, �E
=kB�T=2�BH, where kB is the Boltzmann constant. There-
fore, we expect that thermodynamic fluctuations and hyster-
esis result in direct first-order phase transitions between the
Peierls and SWS phases �see Fig. 2�.

49.0761 49.0761 49.0762 49.0762
H �T�

�8.�10�9

�6.�10�9

�4.�10�9

�2.�10�9

F �Arb. units�

FIG. 4. �Color online� The Landau free energies �20� and �21�
are calculated in the SWS, Peierls, and incommensurate non-SWS
phases. Solid line stands for the Peierls and incommensurate non-
SWS phases, whereas dashed line stands for the SWS phase. Verti-
cal dashed line stands for the first-order phase transition between
the incommensurate non-SWS and SWS phases.
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V. CONCLUSION

To summarize, we have suggested an explanation of the
experimentally observed high resistance state in Q1D or-
ganic conductor �Per�2Pt�mnt�2. The calculated phase dia-
gram �see Figs. 2 and 5� is in very good qualitative and
quantitative agreements with the existing experiments.13,14

We have also predicted the existence of a unique SWS phase
at low enough, H�29 T, and very high, H�49 T, mag-
netic fields, which is characterized by two energy gaps in its
electron spectrum and corresponds to periodically arranged
soliton and antisoliton walls. Our detailed calculations of the
Landau free energy demonstrates that there is an incommen-
surate non-SWS phase between the Peielrs and SWS phases.
Nevertheless, the areas of a stability of the incommensurate
non-SWS phase are shown to be numerically extremely nar-
row, therefore, we suggest that there are direct first-order
phase transitions between the Peierls and SWS phases. It is
important that the calculated in the paper magnetic field de-
pendence of the Landau free energy of different CDW phases
is due to a pure-spin contribution. Therefore, the above-
mentioned first-order phase transitions can be detected as a
divergence of the Knight shift value at the corresponding
magnetic fields. The SWS phase can be also discovered by a
detection of two energy gaps by some infrared measure-
ments. Indirect confirmation of the existence of the SWS
phase in �Per�2Pt�mnt�2 is already provided by the measure-
ments of an activation gap,13 where it is shown that the ac-
tivation gap becomes very small at low enough and very
high magnetic fields. This fact is in an agreement with the
electron energy spectrum of the SWS phase �see Fig. 3�,
which is characterized by two relatively small energy
gaps,21–24 although more detailed experimental analysis is
needed to make a firm statement. And finally, we suggest
neutron and x-rays diffraction experiments in �Per�2Pt�mnt�2

to detect the predicted periodic superstructure of soliton and
antisoliton walls directly, which is the main characteristics of
the SWS CDW phase.
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APPENDIX: CALCULATION OF � and ��s

In this Appendix, we give an outline of the calculations of
the coefficients �, �1, and �2 appearing in the Landau free-
energy expansion near the metal-CDW phase-transition line
�see Eq. �19��.

Feynman diagrams contributing to the second-order cor-
rections to the free energy25 with respect to �q and �−q are
shown in Fig. 6. As a result, we obtain

� = 2
�
��

�
�n

� d	

2

G��

++�i�n,	 + q,H�G��
−−�i�n,	,H� .

�A1�

Mathematical technique for evaluation of Eq. �A1� is
standard,25 which results in

� = −
1

2vFT
�
��

�
n�0 � 1

n +
1

2
+

ivF�q − q���
4
T

+ c.c.� .

�A2�

q�
*
q�

,q� � �

,� �

q��
*
q��

,q� � �

,� �

FIG. 6. Second-order diagrams, corresponding to the terms,
��q�2 and ��−q�2, in the Landau free energy �19�.
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,� � ,q� � �

,� �

*
q��
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FIG. 7. Fourth-order diagrams, corresponding to the terms, ��q�4
and ��−q�4, in the Landau free energy �19�.

Peierls
State
q�0 Non�

Soliton
State
q�0 SWS Phase

q�0

49.0761 49.0761 49.0762
H �T�

49.0762

3.4374

3.4375

3.4376

3.4377

3.4378

Tc �K�

FIG. 5. �Color online� The detailed phase diagram in the vicinity
of H�49 T. Solid line: a second-order phase-transition line be-
tween the metallic and CDW phases. Dashed lines: left, the first-
order phase-transition line from the Peierls state to the incommen-
surate non-SWS phase with nontrivial nesting vector; right, the
first-order phase-transition line from the incommensurate non-SWS
phase to the SWS phase. Due to extremely narrow region of a
stability of the incommensurate non-SDW phase, we expect that
there exists a direct first-order phase transition from the Peierls to
SWS phases �see the text�.
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In Eq. �A2�, wave-vectors q�� are defined by Eq. �4�; c.c.
stands for a complex-conjugate value. After simple calcula-
tions, it can be shown that Eq. �A2� is equivalent to

� = ln�Tc0

T

 −

1

4�
��

�
n=0

�

�
vF

2�q − q���2/�4
T�2

�n +
1

2

��n +

1

2

2

+ vF
2�q − q���2/�4
T�2� . �A3�

By setting � to zero, we obtain the metal-CDW second-order
phase-transition line, Eq. �14�.

The fourth-order terms can be also evaluated by using
perturbation theory for a thermodynamic potential.25 As it
can be shown, ��q�4 and ��−q�4 terms, corresponding to two
diagrams in Fig. 7, have the same coefficients and each such
diagram is characterized by a weighting factor 2, therefore,

�1 =
1

32vF
2T5�
��

�
n�0 � 1

�n +
1

2
+

ivF�q − q���
4
T

�3 + c.c.� .

�A4�

Two diagrams, corresponding to ��q�−q�2 term �see Fig. 8�,
are equal and each of them has a weighting factor 4,
therefore,
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